重构

杂谈 | 共 2223 字 | 2021/8/20 发表 | 2021/8/20 更新

稍微重构了一下网站,本来想写点东西记录一下,懒得写了。

部署

git config --global core.quotePath false && hugo --minify

音乐

{name: "%title%",artist: "%artist%",url: "https://yy.halu.lu/%date%-%album%/%track%-%title%-%artist%.flac",cover: "/头像/头像.png"},

LaTeX\LaTeX

数学

a

Since exp(x)=ex\exp(x) = e^x is a convex function, by Jensen's inequality from MATH 147, we have for t[0,1]t \in [0,1]

exp(ta+(1t)b)texp(a)+(1t)exp(b)\exp(ta+(1-t)b) \le t\exp(a) + (1-t)\exp(b)

Then since 1p+1q=1\frac1p + \frac1q = 1,

ab=exp(loga+logb)=exp(1pploga+1qqlogb)1pexp(ploga)+1qexp(qlogb)=app+bqq\begin{align*} ab &= \exp(\log a + \log b) \\\\ &= \exp(\frac1pp\log a + \frac1qq\log b) \\\\ &\le \frac1p\exp(p\log a) + \frac1q\exp(q\log b) \\\\ &= \frac{a^p}p + \frac{b^q}q \end{align*}

b

The inequality holds when x=0x = 0 or y=0y = 0, so we assume x0x \neq 0 and y0y \neq 0, then we have

xy1xpyq=n=1xnynxpyq=n=1xnxpynyqby(a)n=1xnpp(xp)p+n=1ynqq(yq)q=n=1xnpp(xp)p+n=1ynqq(yq)q=(xp)pp(xp)p+(yq)qq(yq)q=1p+1q=1\begin{align*} \frac{||xy||_1}{||x||_p ||y||_q} &= \sum_{n=1}^\infty \frac{|x_ny_n|}{||x||_p ||y||_q} \\\\ &= \sum_{n=1}^\infty \frac{|x_n|}{||x||_p}\frac{|y_n|}{||y||_q} \\\\ &\stackrel{by(a)}\le \sum_{n=1}^\infty \frac{|x_n|^p}{p(||x||_p)^p} + \sum_{n=1}^\infty \frac{|y_n|^q}{q(||y||_q)^q} \\\\ &= \frac{\sum_{n=1}^\infty|x_n|^p}{p(||x||_p)^p} + \frac{\sum_{n=1}^\infty|y_n|^q}{q(||y||_q)^q} \\\\ &= \frac{(||x||_p)^p}{p(||x||_p)^p} + \frac{(||y||_q)^q}{q(||y||_q)^q} \\\\ &= \frac1p + \frac1q\\\\ &= 1 \end{align*}

Multiplying both side by xpyq||x||_p ||y||_q, we get xy1xpyq||xy||_1 \le ||x||_p ||y||_q.

c

Let (x+y)p1=((x1+y1)p1,(x2+y2)p1,...)(x+y)^{p-1} = ((x_1+y_1)^{p-1},(x_2+y_2)^{p-1},...), then

n=1xn+ynpn=1xnxn+ynp1+n=1ynxn+ynp1=x(x+y)p11+y(x+y)p11by(b)xp(x+y)p1pp1+yp(x+y)p1pp1=(xp+yp)(x+y)p1pp1=(xp+yp)(n=1(xn+ynp1)pp1)p1p=(xp+yp)(n=1xn+ynp)p1p\begin{align*} \sum_{n=1}^\infty |x_n+y_n|^p &\le \sum_{n=1}^\infty |x_n||x_n+y_n|^{p-1} + \sum_{n=1}^\infty |y_n||x_n+y_n|^{p-1} \\\\ &= ||x(x+y)^{p-1}||_1 + ||y(x+y)^{p-1}||_1 \\\\ &\stackrel{by (b)}\le ||x||_p||(x+y)^{p-1}||_{\frac{p}{p-1}} + ||y||_p||(x+y)^{p-1}||_{\frac{p}{p-1}} \\\\ &= (||x||_p+||y||_p)||(x+y)^{p-1}||_{\frac{p}{p-1}} \\\\ &= (||x||_p+||y||_p) (\sum_{n=1}^\infty (|x_n+y_n|^{p-1})^{\frac{p}{p-1}})^\frac{p-1}p \\\\ &= (||x||_p+||y||_p) (\sum_{n=1}^\infty |x_n+y_n|^{p})^\frac{p-1}p \end{align*}

Multiplying both side by (n=1xn+ynp)1pp(\sum_{n=1}^\infty |x_n+y_n|^{p})^\frac{1-p}p, we get

x+yp=(n=1xn+ynp)1p=(n=1xn+ynp)1+1ppxp+yp||x+y||_p=(\sum_{n=1}^\infty |x_n+y_n|^{p})^\frac{1}p = (\sum_{n=1}^\infty |x_n+y_n|^{p})^{1+\frac{1-p}p} \le ||x||_p+||y||_p