重构
杂谈 | 共 2223 字 | 2021/8/20 发表 | 2021/8/20 更新
稍微重构了一下网站,本来想写点东西记录一下,懒得写了。
部署
git config --global core.quotePath false && hugo --minify
音乐
{name: "%title%",artist: "%artist%",url: "https://yy.halu.lu/%date%-%album%/%track%-%title%-%artist%.flac",cover: "/头像/头像.png"},
LATEX
数学
a
Since exp(x)=ex is a convex function, by Jensen's inequality from MATH 147, we have for t∈[0,1]
exp(ta+(1−t)b)≤texp(a)+(1−t)exp(b)
Then since p1+q1=1,
ab=exp(loga+logb)=exp(p1ploga+q1qlogb)≤p1exp(ploga)+q1exp(qlogb)=pap+qbq
b
The inequality holds when x=0 or y=0, so we assume x=0 and y=0, then we have
∣∣x∣∣p∣∣y∣∣q∣∣xy∣∣1=n=1∑∞∣∣x∣∣p∣∣y∣∣q∣xnyn∣=n=1∑∞∣∣x∣∣p∣xn∣∣∣y∣∣q∣yn∣≤by(a)n=1∑∞p(∣∣x∣∣p)p∣xn∣p+n=1∑∞q(∣∣y∣∣q)q∣yn∣q=p(∣∣x∣∣p)p∑n=1∞∣xn∣p+q(∣∣y∣∣q)q∑n=1∞∣yn∣q=p(∣∣x∣∣p)p(∣∣x∣∣p)p+q(∣∣y∣∣q)q(∣∣y∣∣q)q=p1+q1=1
Multiplying both side by ∣∣x∣∣p∣∣y∣∣q, we get ∣∣xy∣∣1≤∣∣x∣∣p∣∣y∣∣q.
c
Let (x+y)p−1=((x1+y1)p−1,(x2+y2)p−1,...), then
n=1∑∞∣xn+yn∣p≤n=1∑∞∣xn∣∣xn+yn∣p−1+n=1∑∞∣yn∣∣xn+yn∣p−1=∣∣x(x+y)p−1∣∣1+∣∣y(x+y)p−1∣∣1≤by(b)∣∣x∣∣p∣∣(x+y)p−1∣∣p−1p+∣∣y∣∣p∣∣(x+y)p−1∣∣p−1p=(∣∣x∣∣p+∣∣y∣∣p)∣∣(x+y)p−1∣∣p−1p=(∣∣x∣∣p+∣∣y∣∣p)(n=1∑∞(∣xn+yn∣p−1)p−1p)pp−1=(∣∣x∣∣p+∣∣y∣∣p)(n=1∑∞∣xn+yn∣p)pp−1
Multiplying both side by (∑n=1∞∣xn+yn∣p)p1−p, we get
∣∣x+y∣∣p=(n=1∑∞∣xn+yn∣p)p1=(n=1∑∞∣xn+yn∣p)1+p1−p≤∣∣x∣∣p+∣∣y∣∣p